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The two dominant, linearly independent surface-wave modes in a circular cylinder, 
which differ only by an azimuthal rotation of +IK and have equal natural frequencies, 
are nonlinearly coupled, both directly and through secondary modes. The corre- 
sponding, weakly nonlinear free oscillations are described by a pair of slowly 
modulated sinusoids, the amplitudes and phases of which are governed by a four- 
dimensional Hamiltonian system that is integrable by virtue of conservation of 
energy and angular momentum. The resulting solutions are harmonic in a particular, 
slowly rotating reference frame. Harmonic oscillations in the laboratory reference 
frame are realized for three special sets of initial conditions and correspond to a 
standing wave with a fixed nodal diameter and to two azimuthally rotating waves 
with opposite senses of rotation. The finite-amplitude corrections to the natural 
frequencies of these harmonic oscillations are calculated as functions of the aspect 
ratio d l a  (depthlradius). A small neighbourhood of d / a  = 0.1523, in which the 
natural frequency of the dominant axisymmetric mode approximates twice that of 
the two dominant antisymmetric modes, is excluded. Weak, linear damping is 
incorporated through a transformation that renders the evolution equations for the 
damped system isomorphic to those for the undamped system. 

1. Introduction 
I consider here weakly nonlinear free oscillations of the dominant free-surface 

modes in a circular cylinder of radius a and ambient depth d ,  starting from the 
Lagrangian formulation developed in an earlier paper (Miles 1976) ; equations and 
sections from that paper are cited by the prefix I. These dominant modes differ only 
by an azimuthal rotation of &I and have the same natural frequency q. They are 
uncoupled (orthogonal) in the linear approximation, but are nonlinearly coupled both 
through direct, third-order interactions and through secondary modes that are 
excited a t  second order and effect indirect, third-order interactions. The resulting 
internal resonance resembles that for a spherical pendulum, but is more complicated 
in consequence of the participation of the secondary modes. 

A more common internal resonance is between two orthogonal modes with natural 
frequencies in the approximate ratio 2 : 1. The direct coupling is then quadratic, the 
indirect coupling through secondary modes is of higher order and therefore negligible, 
and the solution may be obtained through a Hamiltonian formulation with a 
canonical representation of the slowly varying amplitudes and phases (I, $7) .  I posit 
a similar representation for the primary modes in the present problem, but, in order 
to incorporate the secondary modes, find it expedient to start (in $2) from the 
Lagrangian of the system, expressed as a function of the generalized coordinates for 
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the complete set of normal modes. I then (in $3) average this Lagrangian over the 
natural period of the primary oscillation and eliminate the amplitudes of the 
secondary modes (by invoking Hamilton’s principle for the average Lagrangian) to 
obtain a reduced Lagrangian that depends only on the slowly varying amplitudes 
and phases of the dominant modes. The resulting four-dimensional Hamiltonian 
system admits two constants of the motion (which are measures of the energy and 
angular momentum in the original system), by virtue of which the system is 
integrable. 

I obtain the general solution of this Hamiltonian system in $4 through a 
transformation to a slowly rotating reference frame in which the motion is harmonic 
with the angular frequency w given by 

- (:)’= 1-A-, r2 A = k-’tanhkd, 
A2 

(1 .1  a ,  b )  

where is the mean-square (averaged over both space and time) elevation of the 
surface wave, A is a reference length that reduces to 1/k for deep water and to d for 
shallow water, k = 1.8412/a is the wavenumber of the dominant mode, and A, which 
depends only on the aspect ratio d/a of the cylinder, is plotted in figure 1. Harmonic 
motion in the laboratory reference frame is realized only for each of three special sets 
of initial conditions, one of which yields a standing wave with a fixed nodal diameter 
and the other two of which yield azimuthally rotating waves with opposite senses 
of rotation. The angular frequency w of the standing wave is given by ( 1 . 1 ) ;  that 
of the rotating waves is given by a similar result, with A replaced by A + B  (see 
figure 2). 

The result ( 1 . 1 ~ )  is a special case of I (6.5), which gives the finite-amplitude 
correction to the natural frequency of any mode in any cylinder for which the normal 
modes are known and resonant coupling is absent, The corresponding result for 
two-dimensional standing waves in deep water is obtained by setting A = 1 (Rayleigh 
1915). The corresponding result for the lowest axisymmetric mode (one nodal circle) 
in a circular cylinder has been obtained by Mack (1962), whilst that for the simplest 
three-dimensional mode in a rectangular cylinder has been obtained by Verma & 
Keller ( 1962). 

Weak, linear damping may be incorporated in the formulation of $53 and 4 simply 
by adding the appropriate terms to the equations of motion ($6). The system remains 
integrable after a transformation that renders the evolution equations for the damped 
system isomorphic to those for the undamped system. 

It is implicit in the following analysis that none of the secondary natural 
frequencies approximates 2wl, which would imply resonant coupling with the 
primary modes. The critical condition is 

4o:/g = 4k tanh kd = k,  tanh k, d, (1.2) 

where k, is the wavenumber of the secondary mode (with i nodal diameters and 
j - l++tonodalcirclesfor i=O,l ,  ... a n d j =  1,2 ,  ...), andk=kk, , .  OnlytheOjand 
2j modes are excited by the primary 1 1  modes, and ( 1  2)  can be satisfied only for 
kola  = 3.8317, ko,a = 7.0156 and k,,a = 6.7061, for which the critical depths are 
given by d/a = 0.1523, 1.010 and 0.8314, respectively. The relevant coupling 
coefficient (see (A 11))  proved to be numerically small (the dimensionless bandwidths 
of the resonances are of the order of lop4) in the latter two cases, in consequence of 
which damping is likely to vitiate the resonances, but the first resonance, which 
implies IAI, IBI > 10 in 0.12 < d/a < 0.18 (note that this resonance does not affect 
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A +  B ) ,  is manifestly significant. The proper analysis of this resonance, in which the 
dominant axisymmetric 01 mode would have to be treated on the same level as the 
two dominant antisymmetric 11 modes, would lead to a six-dimensional Hamiltonian 
system, which presumably would not be (exactly) integrable and therefore might 
admit chaotic solutions. Absent this analysis, it must be presumed that the present 
results are invalid in some neighbourhood of d l a  = 0.1523. 

Two-degree-of-freedom model 

The calculation of the Lagrangian and its average in $$2 and 3 below is necessarily 
rather complicated; accordingly, on the recommendation of one of the referees, I first 
present the corresponding formulation for a two-degree-of-freedom model. 

Consider two identical oscillators of generalized mass m, resonant frequency o and 
generalized coordinates rl and q2 (which may be assumed to be dimensionless) with 
the Lagrangian 

where y is a measure of the nonlinearity. The system is linear for y = 0 and then 
admits harmonic solutions of the form 7, = A, cos wt + B, sin ot. The corresponding 
solution for weak nonlinearity (y > 0 and 7: + 7: + 1 )  is a slowly modulated sinusoid, 
which may be posed in the (Van der Pol) form 

L = +{% + 4; - w 2 [ ( r ?  + 7 3  + Y(T? + r3”3), (1.3) 

g, = 4pn(7) cos wt+qn(7) sin o t }  (n = 1,2) ,  (1.4) 

where p ,  and q, are slowly varying amplitudes, and 7 = +20t is a slow time (the 
scaling is chosen to simplify the subsequent development). The average Lagrangian, 
as obtained through the substitution of (1.4) into (1.3) followed by averaging over 
a 27c interval of ot, is then given by 

(1.5) (Lc> = + 4 m ~ 2 { & j n  qn-pn 4,) +MI, 
where the dots now signify differentiation with respect to r ,  the repeated index n is 
summed over 1 and 2, and 

H = ~ { - ~ ~ ~ + P ~ + P ~ + q ~ ) 2 + 0 1 4 2 - P 2 q 1 ) 2 ) .  (1.6) 

The requirement that ( L )  be stationary with respect to variations of each of the 
p ,  and qn yields the canonical equations 

(1.7a, b )  

in which H appears as a Hamiltonian and therefore is a constant of the motion. The 
functionals E = ?&? + q: +pi  + qi )  and M = p1  q2 -p2  ql,  which are measures of energy 
and (in a generalized sense) angular momentum, also may be shown (through the 
calculation of and M )  to be constants of the motion, by virtue of which (1.7) may 
be integrated exactly (as in $4). Damping may be incorporated as in $6. 

2. The Lagrangian 
We pose the free-surface displacement in the form 

~ ( r ,  6, t )  = r n ( t )  $n(r ,  4, (2.1) 

where r and B are plane polar coordinates, the repeated indices are summed over 
1, . . . , N ,  and the qn are generalized coordinates ; the $, are members of the complete 
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set of orthogonal eigenfunctions determined by 

(Vz + k2,) @, = 0, - - - 0 ( r  = a ) ,  [ @ m + , ]  = 6,,, (2.2a, b , c )  
ar 

where k n  is the eigenvalue, the square brackets signify a spatial average, 

ra rza 

and S,, is the Kronecker delta. Each of the eigenfunctions for the circular basin 
requires three indices for its complete specification (the azimuthal wavenumber, the 
radial wavenumber, and, except for the axisymmetric modes, the superscript c or s 
to  distinguish between cosine and sine azimuthal variations), and the use of a single 
index in (2.1) and subsequently is merely a convenient abbreviation. The required 
results are 

= N;; J m ( k m n r )  (cos mB, sin m0) (m = 0,1,  ..., n = 1,2,  ...), ( 2 . 4 ~ )  

(2.4b, c) 

where Jm is a Bessel function and k,, is one of the infinite, discrete set of eigenvalues 
determined by (2.4b).t We reserve the single subscripts 1 and 2 for the dominant (or 
primary) modes according to 

@ l , z  = @:is = N - l J , ( k r )  (cos0,sinB) ( N  = Nil, k = k , ,  = 1.8412/a). (2.5) 

The kinetic energy corresponding to (2.1) is given by I (3.1) in the form 

T = +PSaa ,n  f m  V n  (ria dyn/dt), (2.6) 

where the inertial coefficients am,, which have the dimensions of length, depend on 
the vector {q,}, and, in the present investigation, may be approximated by the 
quadratic truncation I (3.3) : 

a m n  = 6mn a m + a l m n  ~ l + + f i j l m n ~ j y l )  (2.7) 

where an = k,' cot,h k n  d E g/u2, (2.8) 

and on are the length of an equivalent pendulum and the natural frequency of the 
nth mode, 

a l m n  = Glmn-  D l m n a m a n ,  ( 2 . 9 ~ )  

(2 .9b)  

( 2 . 1 0 ~ )  

(2.10b, c) 

The required correlation integrals defined by (2.10) are evaluated in Appendix A, 
where it is found that the contributions of 1crol, @gl and to the Lagrangian 
dominate those of the remaining secondary modes by a t  least an order of magnitude. 

aj'ilmn = -Djlmn("m + a n )  +21) im(DLnia (  a m  a n ,  
and 

Clmn = [ @ L  @m @nl j  

D l m n  = [ + l  Q@m * Q+nI, Djlmn = L+j @1V@m*V@n3.  

t The eigenfunction +oo = 1 (koo = 0) is excluded from 7, and hence from the potential energy, 
by conservation of mass, which requires [7] = [7,,] = 0. It obviously makes no contribution to the 
kinetic energy. It does, however, contribute to the velocity potential and enters the calculation of 
the pressure (I, $5) .  



Internally resonant surface waves in a circular cylinder 5 

The potential energy corresponding to (2.1) is given by 

(2.11) 

Combining (2.6)-(2.8) and (2.11), we obtain the truncated Lagrangian (cf. (1.3)) 

3. The average Lagrangian 
We posit the dominant modes in the form (cf. (1 .4) )  

7;ln = eA(23,(~) cos w1 t +pn(7) sin w1 t }  (n = 1 ,2 ) ,  (3.1) 

where e is a small parameter (which ultimately will be reabsorbed in the solution), 
h is the reference length ( l . l b ) ,  p, and qn are slowly varying, dimensionless 
amplitudes, and 

7 = $9w1 t (3.2) 

is a dimensionless, slow time. The remaining (secondary) modes are forced by terms 
in the equations of motion that are quadratic in 7;ll and qZ, in consequence of which 
they must be O(e2)  and have carrier frequencies 0 and 2w, ; accordingly, we posit 

It also follows from scaling considerations that two of the terms in the triple 
product qE rim rin in L must correspond to the dominant modes, and azmn then differs 
from zero only if the third term corresponds to a secondary mode with azimuthal 
wavenumber 0 or 2 (the products of the dominant modes introduce sin2 8, cos2 8 and 
sin 28 in the correlation integrals from which almn is derived, and these products are 
orthogonal to cos m8 and sin m8 unless m = 0 or 2 )  ; accordingly, we may write (note 

a l m n  91 rim rin = a l m n  T Z  r’m rin + a m l n  T m  41, rin + a n m l  Tn rim ril (3.4a) 

that a n l m  = anm.1) 

= a t m n  T E  r’m rin +2anml T n  rim 11, (3.4b) 

on the right-hand sides of which m and n are summed only over 1,2 ,  and 1 is summed 
only over the secondary modes. 

Only the dominant modes contribute to the quartic term in L in the present 
approximation. Inferring from (2 .5) ,  (2.9b) and (2.10b, c )  that 

a 2 2 2 2  = a 1 1 1 1 7  a 2 2 1 1  = 9 1 2 2 5  a 2 1 2 1  = a 1 2 1 2 3  a 2 1 1 2  = a 1 2 2 1 3  (3.5) 

and that the remaining ajlmn ( j ,  I ,  m, n = 1 or 2)  vanish, we obtain 

Substituting (3.1), (3.3), (3.4) and (3 .6)  into (2.12) and averaging L over a 2x 
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dla 
FIGURE 1. The parameter A ,  as determined in Appendix A, versus depth/radius for the circular 
cylinder. A = (4.430, 00, 0, 1.112) at  d / a  = (0, 0.1523, 0.5059, 00) .  See figure 3 for expanded plot. 

-8 - 

-10 
0 

interval of w1 t while holding T fixed (this average is denoted by ( )), we obtain 

+ 2&1122(E1 E ,  +W2) + 2(a1212 + a 1 2 2 1 )  (El E2 - iM2) }  

l h  

a 1  
+,-@a,,z -+aim,) ( 4 P m  P ,  -Pm a,) + W P r n  an + P ,  a m ) )  

+ ~ z m , ~ z ( P m P , + a m a n ) ~ + + ~ , ( ~ ; + ~ Z ' ) - - ~ ~ ,  > (3.7) 1 
wherein the summations are restricted as on the right-hand side of (3.4), an error 
factor of 1 + O(e2) is implicit, the dots now signify differentiation with respect to 7, 

En =+@",a;), E = E l + E 2 ,  M = p l q 2 - p 2 q l  (3 .8a,  b )  

are measures of the energy and angular momentum (see Appendix B) in the dominant 
modes, and 

(3.9) - -- 4% 1. 4 4  - w; - 
8, = 4 a 1  
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FIGURE 2. The parameters B and A + B,  as determined in Appendix A, versus depth/radius for the 
circular cylinder. B = (-7.147, co, 0, 1.531) at d / a  = (0,0.1523,0.4063, a). See figure 3 for 
expanded plot. 

It is implicit that  4 ,  9 6,.  This condition may be violated for the 01, 02 or 21 modes 
if d / a  approximates 0.1523, 1.010 or 0.8314 respectively (see last paragraph in $1). 

Requiring ( L )  to be stationary with respect to each of A,, B, and C,, we obtain 

and (3.10b) 

(note that h / q  = tanh2Ed). The substitution of (3.10) into (3.7) yields (L) as a 
function of the four variables p,, ql ,p2,  q2. Invoking (A 10) and (A 21) of Appendix 
A, we place the result in the form (cf. 1.5)) 

<L> = !i€'9A2{$(Pn qn-Pn qn) +H), (3.1 1 )  

where (cf. (1.6)) H = $4E2 +;BMz (3.12a) 

(3.12 b )  = WP; + q; +Pi + + W P l  Qz-P, P A 2 ,  
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FIGURE 3. Expanded plots of A ,  - B and A + B in the domain of positive A 

and the parameters A and B (which depend only on the aspect ratio d / a )  are given 
by (A 23) and are plotted in figures 1 and 2. 

4. Evolution equations 

obtain the canonical equations 
Requiring ( L )  (3.11) to be stationary with respect to each of the p ,  and q,, we 

(4.1 a, b )  

in which H appears as a Hamiltonian, and therefore (since it does not contain 7 
explicitly) is a constant of the motion. Substituting H from (3.12) into (4.1) and 
introducing 

rn = P n  + i q n ,  r = (rlr rz), (4.2a, b)  

we obtain (4.3) 

It may be inferred from (4.1), or otherwise directly from conservation of energy 
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and angular momentum, that E and Mare constants of the motion; accordingly (4.3) 
is linear and admits the general solution 

(4.4) r(7) = R(BM7) ro eiAEr, 

where the matrix 
- s in4  cos sin $1 q5 ' 

R(4)  = [ 'OS ' (4.5) 

qua linear operator, rotates its vector operand through the angle (p, and ro is the initial 
value of r .  

5. Free-surface motion 
The free-surface displacement (2.1) may be approximated by 

(5.1 a )  

(5.16) 

within 1 + O ( E ) ,  where the subscript d identifies the contribution of the dominant 
modes, and ( 5 . l b )  follows from (5 . la )  through (2.5). Combining (3.1), (4.2) and (4.4), 
we obtain 

(719 7 2 )  = R ( - W  (7;) 72 ,  (5 .2)  

where 7; = eA(p,, cos wt+q,, sin w t )  (n = 1,2),  (5.3) 

(5 .4a,  b )  

Substituting (5.2) into (5.1 b)  and invoking (4.5), we obtain 

7, = N-'J,(kr) (7; cos 8'+7; sin 6'), (5 .5)  

(5 .6)  where 6' = 6-at .  

It follows from (5 .5)  that  qd comprises a pair of orthogonal, simple harmonic, 
standing waves of frequency w in a reference frame that rotates with the angular 
velocity 8. In  the laboratory reference frame, 7d is quasi-periodic and comprises the 
two frequencies w +a. There are, however, three special cases in which the motion 
is harmonic in the laboratory reference frame. 

The first special case is M = 0, for which rd reduces to  a standing wave with a fixed 
nodal diameter. Choosing 6 = $K a t  this nodal diameter, so that q2 E 0, and 
measuring t from the time of maximum displacement, so that ql0 = 0, we obtain 

7d = 71 = (2?)4N-'J1(kr) COS 6 COS wt ( M  = o), (5.7) 

where 7' ([73) = e2h2E (5.8)  
- 

(note that ([73) = ( [ q 2 ] )  within 1 +O(e2)). Eliminating e2 between (5.4a) and (5 .8) ,  
we obtain 

(5.9) 

which is equivalent to  (1 .1  a )  within the present approximation. 
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The remaining special cases are M = +_ E.  Remarking that, from (3.8), 

2 ( E T M )  = (P,T42)2+(P2k41)2> (5.10) 

where, here and subsequently, the alternative signs are vertically ordered, we infer 
that M = 2 E implies p ,  = Tql and q2 = _+pl or, equivalently, r2 = _+irl. Measuring 
t such that qlo = 0 ,  we then may reduce ( 5 . l b )  to 

rd = (;tT'i)t (N-'J,(kr) cos (wtf 0) ( M  = f E) ,  (5.11) 

wherein is given by (5 .8) ,  the alternative signs are vertically ordered, and 
- 

-- - 1-=!j(A+B)-. r2 (5.12) 
u 
u1 A 2  

6. Damped motion 
Linear damping may be incorporated in the preceding formulation by adding 

a(p, ,q , )  to the left-hand sides of ( 4 . l a , b )  and ar to the left-hand side of (4 .3)  (see 
(6 .5)  below), where 

01 = 26/€2, (6 .1)  

and S is the damping ratio (27cS is the logarithmic decrement) of free oscillations in 
the dominant m0de.i (Note that damping dominates the nonlinear effects considered 
here if S >> e2.)  E and M are no longer constants, but it follows from the modified 
evolution equations that they satisfy 

E+2uE = 0, M + 2 a M  = 0, 

and hence that E = Eoe-2"', M = Moe-2"', 

(6 .2a,  b )  

(6.3a, b )  

where E,  and M, are initial values. This suggests the change of variables 

= fe-a', + = ( 2 ~ ) - 1 ( 1  -e--2ar )> (6 .4a,  b )  

under which 

transforms to 

dr  iAE 
- + a r = [ - B M  d7 igr 
_ -  d i  - iAE, BM,]? ,  
df [ - B M o  iAE, 

which is isomorphic to (4.3). It then follows from (4.4) and (6.4) that 

r(7) = R(BM,+)r,exp(-a~+iAE,f). (6 .7)  

Proceeding as in $ 5 ,  we obtain (note that UT = Su,t) 

rd = N-'J,(kr) (ql cos 8+f2 sin 8) e-awlt, 

f ,  = ~ h ( l ) ~ ,  COB (wl t - AE, 7") + qno sin (wl t - AE,  7")} (n = 1 , 2 ) ,  

(6 .8)  

(6 .9)  where 

B = t?+BN,+. (6.10) 

The frequency in, and the angular velocity of, the rotating reference frame, as 

f The logarithmic decrement may be obtained either by direct measurement of the decay of the 
dominant mode in the form (5.7) or through semiempirical calculation (Miles 1967). 
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obtained by differentiating the phase of $ and -d with respect to t ,  are given by 

2c BMo e-28w1 t ,  ( 6 . l l a ,  b )  
SL 

W 1  W 1  

- 1 -lc2AE e-26wit - = -1 2 
0 _ -  

which also are obtained by substituting (6 .3)  into (5.4). 
The damped counterparts of (5.7) and (5.11) may be obtained by choosing 

Mo = ~ 1 0  = ~ 2 0  = ~ 2 0  = 0 or Mo = + E o ,  ~ 2 0  = +1)10, ~ 1 0  = ~ 2 0  = 0. 

The numerical calculations were programmed by Mr Mark Swenson. This work was 
supported in part by the Physical Oceanography Division, National Science 
Foundation, NSF Grant OCE-81-17539, and by a contract with the Office of Naval 
Research. 

Appendix A. Correlation integrals and inertial coefficients 
The correlation integrals Czmn (2.10a) and Dzmn (2 .10b)  are related by I (2.18),  

Dlmn = + kL--lcZ;) Cimn,  (A 1)t 

the substitution of which into (2 .9a)  yields 

aImn = Clmn{l ++(kZ;-k2,-kk)am an}. (A 2 )  

As noted in $ 3 ,  two of the three indices of aImn must correspond to the dominant 
modes (for which k, = k, = k and a2 = al), whilst the third must correspond to a 
mode with azimuthal wavenumber 0 or 2. For the calculation of ( L )  (3.7) ,  we require 

azmn = Ctmn{l  + (+kZ;-k2) a;} (m, n = 1 or 2 )  (A 3 )  

and 2anml -+almn = C,,,{$+ (+k2-+kZ;) a;- kZ; al a,} (m, n = 1 or 2). (A 4) 

Substituting (2 .4a)  and (2 .5a)  into (2.10a) and expanding the index prescriptions 
as in (2.4), we obtain (note that Clmn is invariant under every permutation of its three 
indices) 

= 80, 4, + 82, &*, 0 (A 5 c )  

where, here and subsequently, the c, s alternatives are horizontally ordered, and 

rka 

I z j  = (1 +ao,) (2k2u2N2Nt,)-' J J",x) J,(L, z/k) z dx. 
0 

Similarly, c:g = 80,  Ioj - 62, IZj' 0, 

C;& = 0, s,, I Z j .  

(A 7) 

(A 8) 

The It j  integrals are displayed in table 1 ,  from which it is evident that $ol, $& and 
$il dominate the remaining secondary modes. 

We now use the preceding results to simplify the terms in A,, B ,  and C, in (3.7).  

t Repeated indices are not summed in this Appendix except as explicitly indicated. 
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j i = O  i = 2  

3 1.232 x - I ,087 x 10-3  
4 3.93 x 10-4 - 3.56 x 10-4  

1 0.40954 0.7643 
2 6.470 x lop3 -6.354 x 

TABLE 1. The integrals Zti (A 6) 

Expanding the index prescription in (3.10), summing over m, n = 1 , 2 ,  and invoking 
(A 3) ,  (A 4), (A 5 c ) ,  (A 7 )  and (A 8 ) ,  we obtain 

A = AFIS = - - - e , ' ( $ + ~ k 2 a ~ - t E : j a ~ - - ? .  h 
1 - a? a j  a 1  aij) Iij 

a1 

x {6o,(P~-q~+P,2-q,2)+~6,i(P~-q~-Pp,2+q,2), ~ z i ( P l P z - q l q 2 ) l ~  (A 9a)  

a similar result for B,, with p i  - q i  and p ,  p ,  - q1 qz replaced by 2pn qn and p ,  q2 + p ,  q1 
respectively, and 

Substituting these results into (3.7) and invoking (1 .1  b )  for A ,  (2 .7 )  for aij, (3.8b,  c )  
for E and M ,  and summing over i a n d j ,  we obtain 

and 

where 
( 3 P +  1 -4K;j-2K;j v;.,, I;. 

4(4+ 1) 
p. = (j  summed), 

y .  = 3 = ( tanh kd )', T = tanhhd, K~~ = 2, a j  (A 13a ,b , c )  
k.. 

oil k, tanh k,,. d 

It follows from (A 11)  that  the width of the resonant neighbourhood in which Pi is 
large owing to the proximity of wi j  and 2w is proportional to I:i, which (see table 1 )  
is rather small for the 02  and 22 resonances (see $ I ) ,  but not for the 01 resonance 
(for which the critical aspect ratio is d / a  = 0.1523). 

Turning to ajlmn (j, I ,  m, n = 1 or 2 ) ,  as given by ( 2 . 9 b ) ,  we infer from (A 1 )  that 

DLmn = ak",c,mn (1,m = 1 or 2) ,  (A 14) 

by virtue of which (2 .9b )  reduces to 

ajLmn = 1 2  2al ai kt C j m l  C L n i - 2 a 1  Djlmn (i summed; j, 1,  m, n = 1 or 2 ) ,  (A 15) 



Internally resonant surface waves in a circular cylinder 

The Dilmn (j, 1, m, n = 1 or 2) are given by (2.5) and (2.10~) according to 

Dl111 = D 2 2 2 2  = [$;(11.L+r-2$%)l 
ka 

= (4a2N4)-l/ { 3 ~ ( x ) J ~ 2 ( x ) x + J ~ ( z ) z - 1 } d z  
0 

wherein integration by parts yields 
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(A 16a) 

(A 16b) 

(A 16c) 

(A 17a) 

(A 17b) 

(A 17c) 

(A 18a) 

(A 18 b) 

(A 18c) 

(A 19) 

Kl = N - 4 ( k ~ ) - ~  J Jt(x)xdx = 2.3361, K-, = N-4(ka)-2 J J;(z)x-ldz = 1.2433. 

(A 20a, b) 
0 0 

Combining (A 15)-(A 18) in (3.7), and invoking A / a l  = P, we obtain 

1 A2 
- - {allllw; + m + 2f31122(El E2 +W) + 2(%21* + a1221)  (El E2 -&W) 
4 a 1  

= $(Ra + R, -aKl P)  E2 + $(R2- R, +iKl T2 -!jK-l F )  M2, (A 21) 

(A 22) R -1 4 2 1 2  where t - 4Ki5 vzj tj  (j summed). 

Substituting (A 10) and (A 21) into (3.7), we obtain (3.11) and (3.12) with 

A = -Po - P2 + Qo + Q2 + Ro + R2 -+K1 P, 

B = Po - P2 - Q2 - Ro + R, ++(iK, - 4K-,) P. 

(A 23a) 

(A 23 b) 

The results plotted in figures 1 and 2 are based on single-term (j = 1)  approximations 
to the series Po, P2, . . . , which are adequate for an accuracy of better than 0.1 yo except 
in small neighbourhoods (with dimensionless bandwidths of order of of the 
resonances between the dominant mode and either the 02 or 22 secondary modes. 
The resonance between the dominant mode and the 01 mode is much stronger, and 
the corresponding pole in Po implies A = B = co a t  d/a = 0.1523. It is worth noting 
that this singularity does not affect A +  B. 
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Appendix B. The angular momentum 

b s  
The angular momentum associated with the free-surface displacement (2.1) is given 

where p is the density and $, the velocity potential, is given by (I (2.4b)) 

$ = $, ( t )  $,(r,  0 )  sech k, d cosh k,(y + d) .  (B 2) 

Substituting (B 2) into (B 1) and expanding in powers of 7, we obtain the first 
approximation 

It then suffices, within 1+O(e2), to approximate $, by a,qn (I (2.11), (2.14)) and 
to retain only the dominant modes, thereby reducing (B 3) to 

A = na2PCq$n kn.01. (B 3) 

4 = XU2% P(%%--7241) 

= XU2% PW1 E2A2@1 q 2  - Pz QI), 

where (B 4b) follows from (B 40,) with the aid of (3.1). 
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